Mathematics > Optimization and Control
[Submitted on 30 Oct 2018]
Title:Inverse Quadratic Optimal Control for Discrete-Time Linear Systems
View PDFAbstract:In this paper, we consider the inverse optimal control problem for the discrete-time linear quadratic regulator, over finite-time horizons. Given observations of the optimal trajectories, and optimal control inputs, to a linear time-invariant system, the goal is to infer the parameters that define the quadratic cost function. The well-posedness of the inverse optimal control problem is first justified. In the noiseless case, when these observations are exact, we analyze the identifiability of the problem and provide sufficient conditions for uniqueness of the solution. In the noisy case, when the observations are corrupted by additive zero-mean noise, we formulate the problem as an optimization problem and prove the statistical consistency of the problem later. The performance of the proposed method is illustrated through numerical examples.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.