Computer Science > Information Theory
[Submitted on 31 Oct 2018]
Title:Neural Belief Propagation Decoding of CRC-Polar Concatenated Codes
View PDFAbstract:Polar codes are the first class of error correcting codes that provably achieve the channel capacity at infinite code length. They were selected for use in the fifth generation of cellular mobile communications (5G). In practical scenarios such as 5G, a cyclic redundancy check (CRC) is concatenated with polar codes to improve their finite length performance. This is mostly beneficial for sequential successive-cancellation list decoders. However, for parallel iterative belief propagation (BP) decoders, CRC is only used as an early stopping criterion with incremental error-correction performance improvement. In this paper, we first propose a CRC-polar BP (CPBP) decoder by exchanging the extrinsic information between the factor graph of the polar code and that of the CRC. We then propose a neural CPBP (NCPBP) algorithm which improves the CPBP decoder by introducing trainable normalizing weights on the concatenated factor graph. Our results on a 5G polar code of length 128 show that at the frame error rate of 10^(-5) and with a maximum of 30 iterations, the error-correction performance of CPBP and NCPBP are approximately 0.25 dB and 0.5 dB better than that of the conventional CRC-aided BP decoder, respectively, while introducing almost no latency overhead.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.