Mathematics > Differential Geometry
[Submitted on 30 Nov 2018]
Title:ALE Calabi-Yau metrics with conical singularities along a compact divisor
View PDFAbstract:We construct ALE Calabi-Yau metrics with cone singularities along the exceptional set of resolutions of $\mathbb{C}^n / \Gamma$ with non-positive discrepancies. In particular, this includes the case of the minimal resolution of two dimensional quotient singularities for any finite subgroup $\Gamma \subset U(2)$ acting freely on the three-sphere, hence generalizing Kronheimer's construction of smooth ALE gravitational instantons. Finally, we show how our results extend to the more general asymptotically conical setting.
Submission history
From: Martin de Borbon MdB [view email][v1] Fri, 30 Nov 2018 13:09:11 UTC (19 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.