Mathematics > Complex Variables
[Submitted on 3 Dec 2018]
Title:Distances on the moduli space of complex projective structures
View PDFAbstract:Let $S$ be a closed and oriented surface of genus $g$ at least $2$. In this (mostly expository) article, the object of study is the space $\mathcal{P}(S)$ of marked isomorphism classes of projective structures on $S$. We show that $\mathcal{P}(S)$, endowed with the canonical complex structure, carries exotic hermitian structures that extend the classical ones on the Teichmüller space $\mathcal{T}(S)$ of $S$. We shall notice also that the Kobayashi and Carathéodory pseudodistances, which can be defined for any complex manifold, can not be upgraded to a distance. We finally show that $\mathcal{P}(S)$ does not carry any Bergman pseudometric.
Current browse context:
math.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.