Mathematics > Optimization and Control
[Submitted on 3 Dec 2018 (v1), last revised 6 Sep 2019 (this version, v2)]
Title:A Single Time-Scale Stochastic Approximation Method for Nested Stochastic Optimization
View PDFAbstract:We study constrained nested stochastic optimization problems in which the objective function is a composition of two smooth functions whose exact values and derivatives are not available. We propose a single time-scale stochastic approximation algorithm, which we call the Nested Averaged Stochastic Approximation (NASA), to find an approximate stationary point of the problem. The algorithm has two auxiliary averaged sequences (filters) which estimate the gradient of the composite objective function and the inner function value. By using a special Lyapunov function, we show that NASA achieves the sample complexity of ${\cal O}(1/\epsilon^{2})$ for finding an $\epsilon$-approximate stationary point, thus outperforming all extant methods for nested stochastic approximation. Our method and its analysis are the same for both unconstrained and constrained problems, without any need of batch samples for constrained nonconvex stochastic optimization. We also present a simplified variant of the NASA method for solving constrained single level stochastic optimization problems, and we prove the same complexity result for both unconstrained and constrained problems.
Submission history
From: Saeed Ghadimi [view email][v1] Mon, 3 Dec 2018 21:58:21 UTC (20 KB)
[v2] Fri, 6 Sep 2019 10:16:37 UTC (23 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.