Mathematics > Optimization and Control
[Submitted on 4 Dec 2018 (v1), last revised 8 Jul 2019 (this version, v2)]
Title:Some manifold learning considerations towards explicit model predictive control
View PDFAbstract:Model predictive control (MPC) is a de facto standard control algorithm across the process industries. There remain, however, applications where MPC is impractical because an optimization problem is solved at each time step. We present a link between explicit MPC formulations and manifold learning to enable facilitated prediction of the MPC policy. Our method uses a similarity measure informed by control policies and system state variables, to "learn" an intrinsic parametrization of the MPC controller using a diffusion maps algorithm, which will also discover a low-dimensional control law when it exists as a smooth, nonlinear combination of the state variables. We use function approximation algorithms to project points from state space to the intrinsic space, and from the intrinsic space to policy space. The approach is illustrated first by "learning" the intrinsic variables for MPC control of constrained linear systems, and then by designing controllers for an unstable nonlinear reactor.
Submission history
From: Robert Lovelett [view email][v1] Tue, 4 Dec 2018 02:36:43 UTC (5,707 KB)
[v2] Mon, 8 Jul 2019 20:30:27 UTC (481 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.