Electrical Engineering and Systems Science > Signal Processing
[Submitted on 4 Dec 2018]
Title:Joint Ranging and Clock Synchronization for Dense Heterogeneous IoT Networks
View PDFAbstract:Synchronization and ranging in internet of things (IoT) networks are challenging due to the narrowband nature of signals used for communication between IoT nodes. Recently, several estimators for range estimation using phase difference of arrival (PDoA) measurements of narrowband signals have been proposed. However, these estimators are based on data models which do not consider the impact of clock-skew on the range estimation. In this paper, clock-skew and range estimation are studied under a unified framework. We derive a novel and precise data model for PDoA measurements which incorporates the unknown clock-skew effects. We then formulate joint estimation of the clock-skew and range as a two-dimensional (2-D) frequency estimation problem of a single complex sinusoid. Furthermore, we propose: (i) a two-way communication protocol for collecting PDoA measurements and (ii) a weighted least squares (WLS) algorithm for joint estimation of clock-skew and range leveraging the shift invariance property of the measurement data. Finally, through numerical experiments, the performance of the proposed protocol and estimator is compared against the Cramer Rao lower bound demonstrating that the proposed estimator is asymptotically efficient.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.