Mathematics > Optimization and Control
[Submitted on 5 Dec 2018]
Title:On inexact relative-error hybrid proximal extragradient, forward-backward and Tseng's modified forward-backward methods with inertial effects
View PDFAbstract:In this paper, we propose and study the asymptotic convergence and nonasymptotic global convergence rates (iteration-complexity) of an inertial under-relaxed version of the relative-error hybrid proximal extragradient (HPE) method for solving monotone inclusion problems. We analyze the proposed method under more flexible assumptions than existing ones on the extrapolation and relative-error parameters. As applications, we propose and/or study inertial under-relaxed forward-backward and Tseng's modified forward-backward type methods for solving structured monotone inclusions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.