Mathematics > Commutative Algebra
[Submitted on 6 Dec 2018 (v1), last revised 27 Jul 2020 (this version, v3)]
Title:Waring, tangential and cactus decompositions
View PDFAbstract:(EN) We revise the famous algorithm for symmetric tensor decomposition due to Brachat, Comon, Mourrain and Tsidgaridas. Afterwards, we generalize it in order to detect possibly different decompositions involving points on the tangential variety of a Veronese variety. Finally, we produce an algorithm for cactus rank and decomposition, which also detects the support of the minimal apolar scheme and its length at each component.
(FR) Nous revenons sur le fameux algorithme de Brachat, Comon, Mourrain et Tsidgaridas pour la dćomposition des tenseurs symétriques. Ensuite, nous le généralisons afin de détecter de possibles décompositions différentes impliquant des points sur la variété tangentielle d'une variété de Veronese. Enfin, nous proposons un algorithme pour le rang et la décomposition cactus, qui, lui aussi, détecte le support du schéma apolaire minimal ainsi que sa longueur sur chaque composante.
Submission history
From: Alessandra Bernardi [view email][v1] Thu, 6 Dec 2018 15:39:52 UTC (27 KB)
[v2] Mon, 30 Sep 2019 14:37:50 UTC (31 KB)
[v3] Mon, 27 Jul 2020 12:36:37 UTC (32 KB)
Current browse context:
math.AC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.