Mathematics > Algebraic Geometry
[Submitted on 5 Dec 2018 (v1), last revised 9 Jul 2019 (this version, v3)]
Title:Discriminants of stable rank two sheaves on some general type surfaces
View PDFAbstract:We prove sharp bounds on the discriminants of stable rank two sheaves on surfaces in three-dimensional projective space. The key technical ingredient is to study them as torsion sheaves in projective space via tilt stability in the derived category. We then proceed to describe the surface itself as a moduli space of rank two vector bundles on it. Lastly, we give a proof of the Bogomolov inequality for semistable rank two sheaves on integral surfaces in three-dimensional projective space in all characteristics.
Submission history
From: Benjamin Schmidt [view email][v1] Wed, 5 Dec 2018 21:36:58 UTC (21 KB)
[v2] Thu, 10 Jan 2019 21:55:36 UTC (21 KB)
[v3] Tue, 9 Jul 2019 07:21:29 UTC (22 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.