Mathematics > Complex Variables
[Submitted on 6 Dec 2018]
Title:Monotone Hopf-Harmonics
View PDFAbstract:The present paper introduces the concept of monotone Hopf-harmonics in $2D$ as an alternative to harmonic homeomorphisms. It opens a new area of study in Geometric Function Theory (GFT). Much of the foregoing is motivated by the principle of non-interpenetration of matter in the mathematical theory of Nonlinear Elasticity (NE). The question we are concerned with is whether or not a Dirichlet energy-minimal mapping between Jordan domains with a prescribed boundary homeomorphism remains injective in the domain. The classical theorem of Radó-Kneser-Choquet asserts that this is the case when the target domain is convex. An alternative way to deal with arbitrary target domains is to minimize the Dirichlet energy subject to only homeomorphisms and their limits. This leads to the so called Hopf-Laplace equation. Among its solutions (some rather surreal) are continuous monotone mappings of Sobolev class $\mathscr W^{1,2}_{loc}$, called monotone Hopf-harmonics. It is at the heart of the present paper to show that such solutions are correct generalizations of harmonic homeomorphisms and, in particular, are legitimate deformations of hyperelastic materials in the modern theory of NE. We make this clear by means of several examples.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.