Mathematics > Complex Variables
[Submitted on 7 Dec 2018 (v1), last revised 13 Mar 2020 (this version, v2)]
Title:Global representation of Segre numbers by Monge-Ampère products
View PDFAbstract:On a reduced analytic space $X$ we introduce the concept of a generalized cycle, which extends the notion of a formal sum of analytic subspaces to include also a form part. We then consider a suitable equivalence relation and corresponding quotient $\mathcal{B}(X)$ that we think of as an analogue of the Chow group and a refinement of de Rham cohomology. This group allows us to study both global and local intersection theoretic properties.
We provide many $\mathcal{B}$-analogues of classical intersection theoretic constructions: For an analytic subspace $V\subset X$ we define a $\mathcal{B}$-Segre class, which is an element of $\mathcal{B}(X)$ with support in $V$. It satisfies a global King formula and, in particular, its multiplicities at each point coincide with the Segre numbers of $V$. When $V$ is cut out by a section of a vector bundle we interpret this class as a Monge-Ampère-type product. For regular embeddings we construct a $\mathcal{B}$-analogue of the Gysin morphism.
Submission history
From: Mats Andersson [view email][v1] Fri, 7 Dec 2018 15:01:07 UTC (56 KB)
[v2] Fri, 13 Mar 2020 12:09:15 UTC (39 KB)
Current browse context:
math.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.