Mathematics > Dynamical Systems
[Submitted on 8 Dec 2018 (v1), last revised 23 Jul 2021 (this version, v2)]
Title:Permanence and Extinction for the Stochastic SIR Epidemic Model
View PDFAbstract:The aim of this paper is to study the stochastic SIR equation with general incidence functional responses and in which both natural death rates and the incidence rate are perturbed by white noises. We derive a sufficient and almost necessary condition for the extinction and permanence for an epidemic system with multi noises \begin{equation*} \begin{cases} dS(t)=\big[a_1-b_1S(t)-I(t)f(S(t),I(t))\big]dt + \sigma_1 S(t) dB_1(t) -I(t)g(S(t),I(t))dB_3(t),\\ dI(t)=\big[-b_2I(t) + I(t)f(S(t),I(t))\big]dt + \sigma_2I(t) dB_2(t) + I(t)g(S(t),I(t))dB_3(t). \end{cases} \end{equation*} Moreover, the rate of all convergences of the solution are also established. A number of numerical examples are given to illustrate our results
Submission history
From: Nhu Nguyen [view email][v1] Sat, 8 Dec 2018 15:08:08 UTC (2,145 KB)
[v2] Fri, 23 Jul 2021 02:28:10 UTC (2,568 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.