Mathematics > Probability
[Submitted on 9 Dec 2018 (v1), last revised 13 Sep 2020 (this version, v4)]
Title:Path Dependent Optimal Transport and Model Calibration on Exotic Derivatives
View PDFAbstract:In this paper, we introduce and develop the theory of semimartingale optimal transport in a path dependent setting. Instead of the classical constraints on marginal distributions, we consider a general framework of path dependent constraints. Duality results are established, representing the solution in terms of path dependent partial differential equations (PPDEs). Moreover, we provide a dimension reduction result based on the new notion of "semifiltrations", which identifies appropriate Markovian state variables based on the constraints and the cost function. Our technique is then applied to the exact calibration of volatility models to the prices of general path dependent derivatives.
Submission history
From: Ivan Guo [view email][v1] Sun, 9 Dec 2018 17:19:46 UTC (1,754 KB)
[v2] Sat, 15 Jun 2019 10:50:07 UTC (1,759 KB)
[v3] Thu, 6 Aug 2020 15:49:38 UTC (1,765 KB)
[v4] Sun, 13 Sep 2020 05:15:28 UTC (1,764 KB)
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.