Mathematics > Probability
[Submitted on 10 Dec 2018 (v1), last revised 10 Sep 2019 (this version, v2)]
Title:Coalescing directed random walks on the backbone of a 1 +1-dimensional oriented percolation cluster converge to the Brownian web
View PDFAbstract:We consider the backbone of the infinite cluster generated by supercritical oriented site percolation in dimension 1 +1. A directed random walk on this backbone can be seen as an "ancestral line" of an individual sampled in the stationary discrete-time contact process. Such ancestral lineages were investigated in [BCDG13] where a central limit theorem for a single walker was proved. Here, we consider infinitely many coalescing walkers on the same backbone starting at each space-time point. We show that, after diffusive rescaling, the collection of paths converges in distribution to the Brownian web. Hence, we prove convergence to the Brownian web for a particular system of coalescing random walks in a dynamical random environment. An important tool in the proof is a tail bound on the meeting time of two walkers on the backbone, started at the same time. Our result can be interpreted as an averaging statement about the percolation cluster: apart from a change of variance, it behaves as the full lattice, i.e. the effect of the "holes" in the cluster vanishes on a large scale.
Submission history
From: Nina Gantert [view email][v1] Mon, 10 Dec 2018 11:05:03 UTC (69 KB)
[v2] Tue, 10 Sep 2019 20:26:51 UTC (92 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.