Mathematics > Optimization and Control
[Submitted on 10 Dec 2018]
Title:General parameterized proximal point algorithm with applications in statistical learning
View PDFAbstract:In the literature, there are a few researches to design some parameters in the Proximal Point Algorithm (PPA), especially for the multi-objective convex optimizations. Introducing some parameters to PPA can make it more flexible and attractive. Mainly motivated by our recent work (Bai et al., A parameterized proximal point algorithm for separable convex optimization, Optim. Lett. (2017) doi: https://doi.org/10.1007/s11590-017-1195-9), in this paper we develop a general parameterized PPA with a relaxation step for solving the multi-block separable structured convex programming. By making use of the variational inequality and some mathematical identities, the global convergence and the worst-case $\mathcal{O}(1/t)$ convergence rate of the proposed algorithm are established. Preliminary numerical experiments on solving a sparse matrix minimization problem from statistical learning validate that our algorithm is more efficient than several state-of-the-art algorithms.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.