Mathematics > Probability
[Submitted on 11 Dec 2018 (v1), last revised 21 May 2020 (this version, v2)]
Title:Maximum of Branching Brownian motion in a periodic environment
View PDFAbstract:We study the maximum of Branching Brownian motion (BBM) with branching rates that vary in space, via a periodic function of a particle's location. This corresponds to a variant of the F-KPP equation in a periodic medium, extensively studied in the last 15 years, admitting pulsating fronts as solutions. Recent progress on this PDE due to Hamel, Nolen, Roquejoffre and Ryzhik ('16) implies tightness for the centered maximum of BBM in a periodic environment. Here we establish the convergence in distribution of specific subsequences of this centered maximum, and identify the limiting distribution. Consequently, we find the asymptotic shift between the solution to the corresponding F-KPP equation with Heavyside initial data and the pulsating wave, thereby answering a question of Hamel et al. Analogous results are given for the cases where the Brownian motion is replaced by an Ito diffusion with periodic coefficients, as well as for nearest-neighbor branching random walks.
Submission history
From: Eyal Lubetzky [view email][v1] Tue, 11 Dec 2018 02:25:21 UTC (22 KB)
[v2] Thu, 21 May 2020 13:35:17 UTC (30 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.