Mathematics > Probability
[Submitted on 12 Dec 2018]
Title:A Fourier-based Picard-iteration approach for a class of McKean-Vlasov SDEs with Lévy jumps
View PDFAbstract:We consider a class of Lévy-driven stochastic differential equations (SDEs) with McKean-Vlasov (MK-V) interaction in the drift coefficient. It is assumed that the coefficient is bounded, affine in the state variable, and only measurable in the law of the solution. We study the equivalent functional fixed-point equation for the unknown time-dependent coefficients of the associated Markovian SDE. By proving a contraction property for the functional map in a suitable normed space, we infer existence and uniqueness results for the MK-V SDE, and derive a discretized Picard iteration scheme that approximates the law of the solution through its characteristic function. Numerical illustrations show the effectiveness of our method, which appears to be appropriate to handle the multi-dimensional setting.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.