Mathematics > Optimization and Control
[Submitted on 14 Dec 2018 (v1), last revised 23 Jul 2019 (this version, v2)]
Title:The Boosted DC Algorithm for nonsmooth functions
View PDFAbstract:The Boosted Difference of Convex functions Algorithm (BDCA) was recently proposed for minimizing smooth difference of convex (DC) functions. BDCA accelerates the convergence of the classical Difference of Convex functions Algorithm (DCA) thanks to an additional line search step. The purpose of this paper is twofold. Firstly, to show that this scheme can be generalized and successfully applied to certain types of nonsmooth DC functions, namely, those that can be expressed as the difference of a smooth function and a possibly nonsmooth one. Secondly, to show that there is complete freedom in the choice of the trial step size for the line search, which is something that can further improve its performance. We prove that any limit point of the BDCA iterative sequence is a critical point of the problem under consideration, and that the corresponding objective value is monotonically decreasing and convergent. The global convergence and convergent rate of the iterations are obtained under the Kurdyka-Lojasiewicz property. Applications and numerical experiments for two problems in data science are presented, demonstrating that BDCA outperforms DCA. Specifically, for the Minimum Sum-of-Squares Clustering problem, BDCA was on average sixteen times faster than DCA, and for the Multidimensional Scaling problem, BDCA was three times faster than DCA.
Submission history
From: Francisco Javier Aragón Artacho [view email][v1] Fri, 14 Dec 2018 18:36:06 UTC (1,228 KB)
[v2] Tue, 23 Jul 2019 12:48:54 UTC (1,227 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.