Mathematics > Optimization and Control
[Submitted on 17 Dec 2018 (v1), last revised 3 Mar 2020 (this version, v3)]
Title:Interpretable Matrix Completion: A Discrete Optimization Approach
View PDFAbstract:We consider the problem of matrix completion on an $n \times m$ matrix. We introduce the problem of Interpretable Matrix Completion that aims to provide meaningful insights for the low-rank matrix using side information. We show that the problem can be reformulated as a binary convex optimization problem. We design OptComplete, based on a novel concept of stochastic cutting planes to enable efficient scaling of the algorithm up to matrices of sizes $n=10^6$ and $m=10^6$. We report experiments on both synthetic and real-world datasets that show that OptComplete has favorable scaling behavior and accuracy when compared with state-of-the-art methods for other types of matrix completion, while providing insight on the factors that affect the matrix.
Submission history
From: Michael Lingzhi Li [view email][v1] Mon, 17 Dec 2018 08:28:43 UTC (40 KB)
[v2] Wed, 4 Sep 2019 19:47:36 UTC (40 KB)
[v3] Tue, 3 Mar 2020 23:56:39 UTC (64 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.