Mathematics > Probability
[Submitted on 17 Dec 2018]
Title:Anomalous diffusion for multi-dimensional critical Kinetic Fokker-Planck equations
View PDFAbstract:We consider a particle moving in $d\geq 2$ dimensions, its velocity being a reversible diffusion process, with identity diffusion coefficient, of which the invariant measure behaves, roughly, like $(1+|v|)^{-\beta}$ as $|v|\to \infty$, for some constant $\beta>0$. We prove that for large times, after a suitable rescaling, the position process resembles a Brownian motion if $\beta\geq 4+d$, a stable process if $\beta\in [d,4+d)$ and an integrated multi-dimensional generalization of a Bessel process if $\beta\in (d-2,d)$. The critical cases $\beta=d$, $\beta=1+d$ and $\beta=4+d$ require special rescalings.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.