Mathematics > Probability
[Submitted on 17 Dec 2018 (v1), last revised 23 Apr 2020 (this version, v2)]
Title:Extensive Condensation in a model of Preferential Attachment with Fitnesses
View PDFAbstract:We introduce a new model of preferential attachment with fitness, and establish a time reversed duality between the model and a system of branching-coalescing particles. Using this duality, we give a clear and concise explanation for the condensation phenomenon, in which unusually fit vertices may obtain abnormally high degree: it arises from a growth-extinction dichotomy within the branching part of the dual. We show further that the condensation is extensive. As the graph grows, unusually fit vertices become, each only for a limited time, neighbouring to a non-vanishing proportion of the current graph.
Submission history
From: Nic Freeman [view email][v1] Mon, 17 Dec 2018 18:35:19 UTC (45 KB)
[v2] Thu, 23 Apr 2020 10:15:23 UTC (71 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.