Mathematics > Probability
[Submitted on 18 Dec 2018 (v1), last revised 3 Dec 2022 (this version, v4)]
Title:Some algebraic structures in KPZ universality
View PDFAbstract:We review some algebraic and combinatorial structures that underlie models in the KPZ universality this http URL is placed on the Robinson-Schensted-Knuth correspondence and its geometric lifting due to this http URL. We present how these combinatorial constructions are used to analyse the structure of solvable models in the KPZ class and lead to computation of their statistics via connecting to representation theoretic objects such as Schur, Macdonald and Whittaker functions, Young tableaux and Gelfand-Tsetlin patterns. We also present how fundamental representation theoretic concepts, such as the Cauchy identity, the Pieri rule and the branching rule, can be used, alongside RSK correspondences, and can be combined with probabilistic ideas, in order to construct integrable stochastic dynamics on two dimensional arrays of Gelfand-Tsetlin type, in ways that couple different one dimensional stochastic processes. For example, interacting particle systems, on the one hand, and processes related to eigenvalues of random matrices, on the other, thus illuminating the emergence of random matrix distributions in interacting stochastic processes. The goal of the notes is to expose some of the overarching principles, which have driven a significant number of developments in the field.
Submission history
From: Nikos Zygouras [view email][v1] Tue, 18 Dec 2018 07:20:41 UTC (89 KB)
[v2] Sun, 9 Jun 2019 10:36:57 UTC (89 KB)
[v3] Fri, 18 Feb 2022 17:13:12 UTC (114 KB)
[v4] Sat, 3 Dec 2022 15:48:40 UTC (114 KB)
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.