Mathematics > Probability
[Submitted on 18 Dec 2018 (v1), last revised 27 Sep 2019 (this version, v2)]
Title:Smallest singular value and limit eigenvalue distribution of a class of non-Hermitian random matrices with statistical application
View PDFAbstract:Suppose $X$ is an $N \times n$ complex matrix whose entries are centered, independent, and identically distributed random variables with variance $1/n$ and whose fourth moment is of order ${\mathcal O}(n^{-2})$. In the first part of the paper, we consider the non-Hermitian matrix $X A X^* - z$, where $A$ is a deterministic matrix whose smallest and largest singular values are bounded below and above respectively, and $z\neq 0$ is a complex number. Asymptotic probability bounds for the smallest singular value of this model are obtained in the large dimensional regime where $N$ and $n$ diverge to infinity at the same rate.
In the second part of the paper, we consider the special case where $A = J = [1_{i-j = 1\mod n} ]$ is a circulant matrix. Using the result of the first part, it is shown that the limit eigenvalue distribution of $X J X^*$ exists in the large dimensional regime, and we determine this limit explicitly. A statistical application of this result devoted towards testing the presence of correlations within a multivariate time series is considered. Assuming that $X$ represents a ${\mathbb C}^N$-valued time series which is observed over a time window of length $n$, the matrix $X J X^*$ represents the one-step sample autocovariance matrix of this time series. Guided by the result on the limit spectral measure of this matrix, a whiteness test against an MA correlation model on the time series is introduced. Numerical simulations show the excellent performance of this test.
Submission history
From: Walid Hachem [view email][v1] Tue, 18 Dec 2018 08:46:09 UTC (91 KB)
[v2] Fri, 27 Sep 2019 12:20:39 UTC (90 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.