Computer Science > Information Theory
[Submitted on 18 Dec 2018]
Title:Exploiting Full/Half-Duplex User Relaying in NOMA Systems
View PDFAbstract:In this paper, a novel cooperative non-orthogonal multiple access (NOMA) system is proposed, where one near user is employed as decode-and-forward (DF) relaying switching between full-duplex (FD) and half-duplex (HD) mode to help a far user. Two representative cooperative relaying scenarios are investigated insightfully. The \emph{first scenario} is that no direct link exists between the base station (BS) and far user. The \emph{second scenario} is that the direct link exists between the BS and far user. To characterize the performance of potential gains brought by FD NOMA in two considered scenarios, three performance metrics outage probability, ergodic rate and energy efficiency are discussed. More particularly, we derive new closed-form expressions for both exact and asymptotic outage probabilities as well as delay-limited throughput for two NOMA users. Based on the derived results, the diversity orders achieved by users are obtained. We confirm that the use of direct link overcomes zero diversity order of far NOMA user inherent to FD relaying. Additionally, we derive new closed-form expressions for asymptotic ergodic rates. Based on these, the high signal-to-noise radio (SNR) slopes of two users for FD NOMA are obtained. Simulation results demonstrate that: 1) FD NOMA is superior to HD NOMA in terms of outage probability and ergodic sum rate in the low SNR region; and 2) In delay-limited transmission mode, FD NOMA has higher energy efficiency than HD NOMA in the low SNR region; However, in delay-tolerant transmission mode, the system energy efficiency of HD NOMA exceeds FD NOMA in the high SNR region.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.