Mathematics > Combinatorics
[Submitted on 18 Dec 2018 (v1), last revised 5 Apr 2021 (this version, v3)]
Title:On zero-free regions for the anti-ferromagnetic Potts model on bounded-degree graphs
View PDFAbstract:For a graph $G=(V,E)$, $k\in \mathbb{N}$, and a complex number $w$ the partition function of the univariate Potts model is defined as \[ {\bf Z}(G;k,w):=\sum_{\phi:V\to [k]}\prod_{\substack{uv\in E \\ \phi(u)=\phi(v)}}w, \] where $[k]:=\{1,\ldots,k\}$. In this paper we give zero-free regions for the partition function of the anti-ferromagnetic Potts model on bounded degree graphs. In particular we show that for any $\Delta\in \mathbb{N}$ and any $k\geq e\Delta+1$, there exists an open set $U$ in the complex plane that contains the interval $[0,1)$ such that ${\bf Z}(G;k,w)\neq 0$ for any $w\in U$ and any graph $G$ of maximum degree at most $\Delta$. (Here $e$ denotes the base of the natural logarithm.) For small values of $\Delta$ we are able to give better results.
As an application of our results we obtain improved bounds on $k$ for the existence of deterministic approximation algorithms for counting the number of proper $k$-colourings of graphs of small maximum degree.
Submission history
From: Guus Regts [view email][v1] Tue, 18 Dec 2018 17:59:01 UTC (26 KB)
[v2] Fri, 15 Feb 2019 15:37:46 UTC (22 KB)
[v3] Mon, 5 Apr 2021 14:27:01 UTC (23 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.