Mathematics > Probability
[Submitted on 19 Dec 2018 (v1), last revised 31 Jan 2019 (this version, v2)]
Title:Asymptotic normality in random graphs with given vertex degrees
View PDFAbstract:We consider random graphs with a given degree sequence and show, under weak technical conditions, asymptotic normality of the number of components isomorphic to a given tree, first for the random multigraph given by the configuration model and then, by a conditioning argument, for the simple uniform random graph with the given degree sequence. Such conditioning is standard for convergence in probability, but much less straightforward for convergence in distribution as here. The proof uses the method of moments, and is based on a new estimate of mixed cumulants in a case of weakly dependent variables. The result on small components is applied to give a new proof of a recent result by Barbour and Röllin on asymptotic normality of the size of the giant component in the random multigraph; moreover, we extend this to the random simple graph.
Submission history
From: Svante Janson [view email][v1] Wed, 19 Dec 2018 16:25:33 UTC (53 KB)
[v2] Thu, 31 Jan 2019 05:53:26 UTC (54 KB)
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.