Mathematics > Operator Algebras
[Submitted on 19 Dec 2018 (v1), last revised 5 Nov 2019 (this version, v2)]
Title:Roots of Completely Positive Maps
View PDFAbstract:We introduce the concept of completely positive roots of completely positive maps on operator algebras. We do this in different forms: as asymptotic roots, proper discrete roots and as continuous one-parameter semigroups of roots. We present structural and general existence and non-existence results, some special examples in settings where we understand the situation better, and several challenging open problems. Our study is closely related to Elfving's embedding problem in classical probability and the divisibility problem of quantum channels.
Submission history
From: Robin Hillier [view email][v1] Wed, 19 Dec 2018 18:07:23 UTC (20 KB)
[v2] Tue, 5 Nov 2019 15:14:37 UTC (20 KB)
Current browse context:
math.OA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.