Mathematics > Combinatorics
[Submitted on 19 Dec 2018 (v1), last revised 23 Feb 2021 (this version, v3)]
Title:Exposed circuits, linear quotients, and chordal clutters
View PDFAbstract:A graph $G$ is said to be chordal if it has no induced cycles of length four or more. In a recent preprint Culbertson, Guralnik, and Stiller give a new characterization of chordal graphs in terms of sequences of what they call `edge-erasures'. We show that these moves are in fact equivalent to a linear quotient ordering on $I_{\overline{G}}$, the edge ideal of the complement graph. Known results imply that $I_{\overline G}$ has linear quotients if and only if $G$ is chordal, and hence this recovers an algebraic proof of their characterization. We investigate higher-dimensional analogues of this result, and show that in fact linear quotients for more general circuit ideals of $d$-clutters can be characterized in terms of removing exposed circuits in the complement clutter. Restricting to properly exposed circuits can be characterized by a homological condition. This leads to a notion of higher dimensional chordal clutters which borrows from commutative algebra and simple homotopy theory. The interpretation of linear quotients in terms of shellability of simplicial complexes also has applications to a conjecture of Simon regarding the extendable shellability of $k$-skeleta of simplices. Other connections to combinatorial commutative algebra, chordal complexes, and hierarchical clustering algorithms are explored.
Submission history
From: Anton Dochtermann [view email][v1] Wed, 19 Dec 2018 18:13:16 UTC (759 KB)
[v2] Mon, 25 Feb 2019 18:12:58 UTC (763 KB)
[v3] Tue, 23 Feb 2021 21:49:07 UTC (762 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.