Mathematics > Representation Theory
[Submitted on 20 Dec 2018 (v1), last revised 27 Apr 2021 (this version, v4)]
Title:Continuum Kac-Moody algebras
View PDFAbstract:We introduce a new class of infinite-dimensional Lie algebras, which we refer to as continuum Kac-Moody algebras. Their construction is closely related to that of usual Kac-Moody algebras, but they feature a continuum root system with no simple roots. Their Cartan datum encodes the topology of a one-dimensional real space and can be thought of as a generalization of a quiver, where vertices are replaced by connected intervals. For these Lie algebras, we prove an analogue of the Gabber-Kac-Serre theorem, providing a complete set of defining relations featuring only quadratic Serre relations. Moreover, we provide an alternative realization as continuum colimits of symmetric Borcherds-Kac-Moody algebras with at most isotropic simple roots. The approach we follow deeply relies on the more general notion of a semigroup Lie algebra and its structural properties.
Submission history
From: Andrea Appel [view email][v1] Thu, 20 Dec 2018 12:48:54 UTC (51 KB)
[v2] Thu, 24 Jan 2019 10:20:41 UTC (56 KB)
[v3] Thu, 14 Mar 2019 17:56:06 UTC (55 KB)
[v4] Tue, 27 Apr 2021 08:30:03 UTC (52 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.