Mathematics > Algebraic Geometry
[Submitted on 20 Dec 2018 (v1), last revised 28 Nov 2019 (this version, v2)]
Title:Pathologies on the Hilbert scheme of points
View PDFAbstract:We prove that the Hilbert scheme of points on a higher dimensional affine space is non-reduced and has components lying entirely in characteristic p for all primes p. In fact, we show that Vakil's Murphy's Law holds up to retraction for this scheme. Our main tool is a generalized version of the Bialynicki-Birula decomposition.
Submission history
From: Joachim Jelisiejew [view email][v1] Thu, 20 Dec 2018 12:52:25 UTC (33 KB)
[v2] Thu, 28 Nov 2019 11:50:03 UTC (35 KB)
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.