Computer Science > Artificial Intelligence
[Submitted on 12 Dec 2018 (v1), last revised 29 Jul 2019 (this version, v2)]
Title:A robust hierarchical nominal classification method based on similarity and dissimilarity using loss function and an improved version of the deck of cards method
View PDFAbstract:Cat-SD is a multiple criteria decision aiding method for dealing with nominal classification problems. Actions are assessed according to multiple criteria and assigned to one or more categories. A set of reference actions is used for defining each category. The assignment of an action to a given category depends on the comparison of the action to each reference set according to likeness thresholds. Distinct sets of criteria weights, interaction coefficients, and likeness thresholds can be defined per category. We propose to apply Multiple Criteria Hierarchy Process (MCHP) to Cat-SD. An adapted MCHP is proposed to take into account possible interaction effects between criteria structured in a hierarchical way. On the basis of the known deck of cards method, we also consider an imprecise elicitation of parameters permitting to take into account interactions and antagonistic effects between criteria. The elicitation procedure we are proposing can be applied to any Electre method. With the purpose of exploring the assignments obtained by Cat-SD considering possible sets of parameters, we propose to apply the Stochastic Multicriteria Acceptability Analysis (SMAA). The SMAA methodology allows to draw statistical conclusions on the classification of the actions. The proposed method, SMAA-hCat-SD, helps the decision maker to check the effects of the variation of parameters on the classification at different levels of the hierarchy. We propose also a procedure, based on the concept of loss function, to obtain a final classification fulfilling some requirements given by the decision maker and taking into account the hierarchy of criteria and the probabilistic assignments obtained applying SMAA. Also this procedure can be applied to any classification Electre method.
Submission history
From: Salvatore Corrente [view email][v1] Wed, 12 Dec 2018 12:50:08 UTC (40 KB)
[v2] Mon, 29 Jul 2019 11:04:53 UTC (185 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.