Mathematical Physics
[Submitted on 20 Dec 2018]
Title:Revivals and Fractalisation in the Linear Free Space Schrödinger Equation
View PDFAbstract:We consider the one-dimensional linear free space Schrödinger equation on a bounded interval subject to homogeneous linear boundary conditions. We prove that, in the case of pseudoperiodic boundary conditions, the solution of the initial-boundary value problem exhibits the phenomenon of revival at specific (`rational') times, meaning that it is a linear combination of a certain number of copies of the initial datum. Equivalently, the fundamental solution at these times is a finite linear combination of delta functions. At other (`irrational') times, for suitably rough initial data, e.g., a step or more general piecewise constant function, the solution exhibits a continuous but fractal-like profile. Further, we express the solution for general homogenous linear boundary conditions in terms of numerically computable eigenfunctions. Alternative solution formulas are derived using the Uniform Transform Method (UTM), that can prove useful in more general situations. We then investigate the effects of general linear boundary conditions, including Robin, and find novel `dissipative' revivals in the case of energy decreasing conditions.
Current browse context:
math-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.