Mathematics > Statistics Theory
[Submitted on 20 Dec 2018 (v1), last revised 17 Jul 2020 (this version, v2)]
Title:Testing multivariate uniformity based on random geometric graphs
View PDFAbstract:We present new families of goodness-of-fit tests of uniformity on a full-dimensional set $W\subset\R^d$ based on statistics related to edge lengths of random geometric graphs. Asymptotic normality of these statistics is proven under the null hypothesis as well as under fixed alternatives. The derived tests are consistent and their behaviour for some contiguous alternatives can be controlled. A simulation study suggests that the procedures can compete with or are better than established goodness-of-fit tests. We show with a real data example that the new tests can detect non-uniformity of a small sample data set, where most of the competitors fail.
Submission history
From: Bruno Ebner [view email][v1] Thu, 20 Dec 2018 15:38:05 UTC (89 KB)
[v2] Fri, 17 Jul 2020 14:04:55 UTC (112 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.