Mathematics > Operator Algebras
[Submitted on 20 Dec 2018]
Title:Vacuum distribution, norm and spectral properties for sums of monotone position operators
View PDFAbstract:We investigate the spectrum for partial sums of m position (or gaussian) operators on monotone Fock space based on $\ell^2(\mathbb{N})$. In the basic case of the first consecutive operators, we prove it coincides with the support of the vacuum distribution. Thus, the right endpoint of the support gives their norm. In the general case, we get the last property for norm still holds. As the single position operator has the vacuum symmetric Bernoulli law, and the whole of them is a monotone independent family of random variables, the vacuum distribution for partial sums of $n$ operators can be seen as the monotone binomial with $n$ trials. It is a discrete measure supported on a finite set, and we exhibit recurrence formulas to compute its atoms and probability function as well. Moreover, lower and upper bounds for the right endpoints of the supports are given.
Submission history
From: Vitonofrio Crismale [view email][v1] Thu, 20 Dec 2018 16:42:47 UTC (38 KB)
Current browse context:
math.OA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.