Mathematics > Number Theory
[Submitted on 20 Dec 2018 (v1), last revised 12 Dec 2019 (this version, v4)]
Title:Primos, paridad y análisis
View PDFAbstract:Distinguir entre enteros con un número par o impar de divisores primos es una de las tareas más difíciles en la teoría analítica de números. Un trabajo reciente de Matomäki y Radziwiłł muestra que, en promedio, ambos existen con la misma frecuencia aún en intervalos muy cortos. Este avance ya ha tenido varias aplicaciones importantes en las manos de Matomäki, Radziwiłł, Tao y Teräväinen. Explicaremos en detalle una prueba completa del resultado original de Matomäki y Radziwiłł, así como de varias aplicaciones.
-----
To distinguish between integers with an even or an odd number of prime factors is one of the most difficult tasks in Analytic Number Theory. A recent work by Matomäki and Radziwiłł shows that, in average, both types of integers appear with the same frequency even in very short intervals. This breakthrough has already had several applications in the hands of Matomäki, Radziwiłł, Tao and Teräväinen. We explain in detail the complete proof of both the original result by Matomäki and Radziwiłł and of some of its applications.
Submission history
From: Adrián Ubis [view email][v1] Thu, 20 Dec 2018 17:16:39 UTC (72 KB)
[v2] Wed, 27 Mar 2019 17:21:38 UTC (73 KB)
[v3] Fri, 7 Jun 2019 10:44:57 UTC (73 KB)
[v4] Thu, 12 Dec 2019 21:10:55 UTC (73 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.