Mathematics > Optimization and Control
[Submitted on 20 Dec 2018 (v1), last revised 3 Nov 2019 (this version, v2)]
Title:Sharp semi-concavity in a non-autonomous control problem and $L^p$ estimates in an optimal-exit MFG
View PDFAbstract:This paper studies a mean field game inspired by crowd motion in which agents evolve in a compact domain and want to reach its boundary minimizing the sum of their travel time and a given boundary cost. Interactions between agents occur through their dynamic, which depends on the distribution of all agents.
We start by considering the associated optimal control problem, showing that semi-concavity in space of the corresponding value function can be obtained by requiring as time regularity only a lower Lipschitz bound on the dynamics. We also prove differentiability of the value function along optimal trajectories under extra regularity assumptions.
We then provide a Lagrangian formulation for our mean field game and use classical techniques to prove existence of equilibria, which are shown to satisfy a MFG system. Our main result, which relies on the semi-concavity of the value function, states that an absolutely continuous initial distribution of agents with an $L^p$ density gives rise to an absolutely continuous distribution of agents at all positive times with a uniform bound on its $L^p$ norm. This is also used to prove existence of equilibria under fewer regularity assumptions on the dynamics thanks to a limit argument.
Submission history
From: Guilherme Mazanti [view email][v1] Thu, 20 Dec 2018 17:35:41 UTC (49 KB)
[v2] Sun, 3 Nov 2019 16:35:04 UTC (48 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.