Mathematics > Combinatorics
[Submitted on 20 Dec 2018]
Title:Simple Graph Density Inequalities with no Sum of Squares Proofs
View PDFAbstract:Establishing inequalities among graph densities is a central pursuit in extremal combinatorics. A standard tool to certify the nonnegativity of a graph density expression is to write it as a sum of squares. In this paper, we identify a simple condition under which a graph density expression cannot be a sum of squares. Using this result, we prove that the Blakley-Roy inequality does not have a sum of squares certificate when the path length is odd. We also show that the same Blakley-Roy inequalities cannot be certified by sums of squares using a multiplier of the form one plus a sum of squares. These results answer two questions raised by Lovász. Our main tool is used again to show that the smallest open case of Sidorenko's conjectured inequality cannot be certified by a sum of squares. Finally, we show that our setup is equivalent to existing frameworks by Razborov and Lovász-Szegedy, and thus our results hold in these settings too.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.