Mathematics > Optimization and Control
[Submitted on 21 Dec 2018 (v1), last revised 31 May 2019 (this version, v2)]
Title:Resilient Distributed Parameter Estimation with Heterogeneous Data
View PDFAbstract:This paper studies resilient distributed estimation under measurement attacks. A set of agents each makes successive local, linear, noisy measurements of an unknown vector field collected in a vector parameter. The local measurement models are heterogeneous across agents and may be locally unobservable for the unknown parameter. An adversary compromises some of the measurement streams and changes their values arbitrarily. The agents' goal is to cooperate over a peer-to-peer communication network to process their (possibly compromised) local measurements and estimate the value of the unknown vector parameter. We present SAGE, the Saturating Adaptive Gain Estimator, a distributed, recursive, consensus+innovations estimator that is resilient to measurement attacks. We demonstrate that, as long as the number of compromised measurement streams is below a particular bound, then, SAGE guarantees that all of the agents' local estimates converge almost surely to the value of the parameter. The resilience of the estimator -- i.e., the number of compromised measurement streams it can tolerate -- does not depend on the topology of the inter-agent communication network. Finally, we illustrate the performance of SAGE through numerical examples.
Submission history
From: Yuan Chen [view email][v1] Fri, 21 Dec 2018 01:01:48 UTC (1,599 KB)
[v2] Fri, 31 May 2019 00:32:08 UTC (2,349 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.