Mathematics > Combinatorics
[Submitted on 21 Dec 2018 (v1), last revised 8 May 2019 (this version, v2)]
Title:Reconciling Event-Labeled Gene Trees with MUL-trees and Species Networks
View PDFAbstract:Phylogenomics commonly aims to construct evolutionary trees from genomic sequence information. One way to approach this problem is to first estimate event-labeled gene trees (i.e., rooted trees whose non-leaf vertices are labeled by speciation or gene duplication events), and to then look for a species tree which can be reconciled with this tree through a \emph{reconciliation map} between the trees. In practice, however, it can happen that there is no such map from a given event-labeled tree to \emph{any} species tree. An important situation where this might arise is where the species evolution is better represented by a \emph{network} instead of a tree. In this paper, we therefore consider the problem of reconciling event-labeled trees with species networks. In particular, we prove that any event-labeled gene tree can be reconciled with some network and that, under certain mild assumptions on the gene tree, the network can even be assumed to be multi-arc free. To prove this result, we show that we can always reconcile the gene tree with some multi-labeled (MUL-)tree, which can then be "folded up" to produce the desired reconciliation and network. In addition, we study the interplay between reconciliation maps from event-labeled gene trees to MUL-trees and networks. Our results could be useful for understanding how genomes have evolved after undergoing complex evolutionary events such as polyploidy.
Submission history
From: Marc Hellmuth [view email][v1] Fri, 21 Dec 2018 08:57:26 UTC (212 KB)
[v2] Wed, 8 May 2019 12:55:51 UTC (209 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.