Mathematics > Numerical Analysis
[Submitted on 21 Dec 2018 (v1), last revised 5 Mar 2019 (this version, v2)]
Title:Navier-Stokes equations on Riemannian manifolds
View PDFAbstract:We study properties of the solutions to Navier-Stokes system on compact Riemannian manifolds. The motivation for such a formulation comes from atmospheric models as well as some thin film flows on curved surfaces. There are different choices of the diffusion operator which have been used in previous studies, and we make a few comments why the choice adopted below seems to us the correct one. This choice leads to the conclusion that Killing vector fields are essential in analyzing the qualitative properties of the flow. We give several results illustrating this and analyze also the linearized version of Navier-Stokes system which is interesting in numerical applications. Finally we consider the 2 dimensional case which has specific characteristics, and treat also the Coriolis effect which is essential in atmospheric flows.
Submission history
From: Maryam Samavaki [view email][v1] Fri, 21 Dec 2018 09:38:50 UTC (17 KB)
[v2] Tue, 5 Mar 2019 10:22:40 UTC (21 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.