Mathematics > Optimization and Control
[Submitted on 21 Dec 2018 (v1), last revised 19 Oct 2019 (this version, v2)]
Title:Risk aware minimum principle for optimal control of stochastic differential equations
View PDFAbstract:We present a probabilistic formulation of risk aware optimal control problems for stochastic differential equations. Risk awareness is in our framework captured by objective functions in which the risk neutral expectation is replaced by a risk function, a nonlinear functional of random variables that account for the controller's risk preferences. We state and prove a risk aware minimum principle that is a parsimonious generalization of the well-known risk neutral, stochastic Pontryagin's minimum principle. As our main results we give necessary and also sufficient conditions for optimality of control processes taking values on probability measures defined on a given action space. We show that remarkably, going from the risk neutral to the risk aware case, the minimum principle is simply modified by the introduction of one additional real-valued stochastic process that acts as a risk adjustment factor for given cost rate and terminal cost functions. This adjustment process is explicitly given as the expectation, conditional on the filtration at the given time, of an appropriately defined functional derivative of the risk function evaluated at the random total cost. For our results we rely on the Fréchet differentiability of the risk function, and for completeness, we prove under mild assumptions the existence of Fréchet derivatives of some common risk functions. We give a simple application of the results for a portfolio allocation problem and show that the risk awareness of the objective function gives rise to a risk premium term that is characterized by the risk adjustment process described above. This suggests uses of our results in e.g. pricing of risk modeled by generic risk functions in financial applications.
Submission history
From: William Haskell [view email][v1] Fri, 21 Dec 2018 15:09:03 UTC (34 KB)
[v2] Sat, 19 Oct 2019 03:31:05 UTC (48 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.