Mathematics > Analysis of PDEs
[Submitted on 21 Dec 2018]
Title:Finite time blowup of solutions to semilinear wave equation in an exterior domain
View PDFAbstract:We consider the initial-boundary value problem of semilinear wave equation with nonlinearity $|u|^p$ in exterior domain in $\mathbf{R}^N$ $(N\geq 3)$. Especially, the lifespan of blowup solutions with small initial data are studied. The result gives upper bounds of lifespan which is essentially the same as the Cauchy problem in $\mathbf{R}^N$. At least in the case $N=4$, their estimates are sharp in view of the work by Zha--Zhou (2015). The idea of the proof is to use special solutions to linear wave equation with Dirichlet boundary condition which are constructed via an argument based on Wakasa--Yordanov.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.