Mathematics > Statistics Theory
[Submitted on 21 Dec 2018 (v1), last revised 8 Aug 2019 (this version, v2)]
Title:Spatial Blind Source Separation
View PDFAbstract:Recently a blind source separation model was suggested for spatial data together with an estimator based on the simultaneous diagonalisation of two scatter matrices. The asymptotic properties of this estimator are derived here and a new estimator, based on the joint diagonalisation of more than two scatter matrices, is proposed. The asymptotic properties and merits of the novel estimator are verified in simulation studies. A real data example illustrates the method.
Submission history
From: Klaus Nordhausen [view email] [via CCSD proxy][v1] Fri, 21 Dec 2018 15:25:01 UTC (3,109 KB)
[v2] Thu, 8 Aug 2019 19:29:06 UTC (4,430 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.