Mathematics > Functional Analysis
[Submitted on 21 Dec 2018]
Title:Orlicz-Sobolev nematic elastomers
View PDFAbstract:We extend the existence theorems in [Barchiesi, Henao \& Mora-Corral; ARMA 224], for models of nematic elastomers and magnetoelasticity, to a larger class in the scale of Orlicz spaces. These models consider both an elastic term where a polyconvex energy density is composed with an unknown state variable defined in the deformed configuration, and a functional corresponding to the nematic energy (or the exchange and magnetostatic energies in magnetoelasticity) where the energy density is integrated over the deformed configuration. In order to obtain the desired compactness and lower semicontinuity, we show that the regularity requirement that maps create no new surface can still be imposed when the gradients are in an Orlicz class with an integrability just above the space dimension minus one. We prove that the fine properties of orientation-preserving maps satisfying that regularity requirement (namely, being weakly 1-pseudomonotone, $\mathcal H^1$-continuous, a.e.\ differentiable, and a.e.\ locally invertible) are still valid in the Orlicz-Sobolev setting.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.