Mathematics > Algebraic Topology
[Submitted on 21 Dec 2018]
Title:Directed topological complexity
View PDFAbstract:It has been observed that the very important motion planning problem of robotics mathematically speaking boils down to the problem of finding a section to the path-space fibration, raising the notion of topological complexity, as introduced by M. Farber. The above notion fits the motion planning problem of robotics when there are no constraints on the actual control that can be applied to the physical apparatus. In many applications, however, a physical apparatus may have constrained controls, leading to constraints on its potential future dynamics. In this paper we adapt the notion of topological complexity to the case of directed topological spaces, which encompass such controlled systems, and also systems which appear in concurrency theory. We study its first properties, make calculations for some interesting classes of spaces, and show applications to a form of directed homotopy equivalence.
Current browse context:
math.AT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.