Computer Science > Systems and Control
[Submitted on 21 Dec 2018]
Title:Derandomized Distributed Multi-resource Allocation with Little Communication Overhead
View PDFAbstract:We study a class of distributed optimization problems for multiple shared resource allocation in Internet-connected devices. We propose a derandomized version of an existing stochastic additive-increase and multiplicative-decrease (AIMD) algorithm. The proposed solution uses one bit feedback signal for each resource between the system and the Internet-connected devices and does not require inter-device communication. Additionally, the Internet-connected devices do not compromise their privacy and the solution does not dependent on the number of participating devices. In the system, each Internet-connected device has private cost functions which are strictly convex, twice continuously differentiable and increasing. We show empirically that the long-term average allocations of multiple shared resources converge to optimal allocations and the system achieves minimum social cost. Furthermore, we show that the proposed derandomized AIMD algorithm converges faster than the stochastic AIMD algorithm and both the approaches provide approximately same solutions.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.