Mathematics > Analysis of PDEs
[Submitted on 22 Dec 2018 (v1), last revised 25 Jan 2020 (this version, v2)]
Title:Prescribing Morse scalar curvatures: subcritical blowing-up solutions
View PDFAbstract:Prescribing conformally the scalar curvature of a Riemannian manifold as a given function consists in solving an elliptic PDE involving the critical Sobolev exponent. One way of attacking this problem consist in using subcritical approximations for the equation, gaining compactness properties. Together with the results in \cite{MM1}, we completely describe the blow-up phenomenon in case of uniformly bounded energy and zero weak limit in positive Yamabe class. In particular, for dimension greater or equal to five, Morse functions and with non-zero Laplacian at each critical point, we show that subsets of critical points with negative Laplacian are in one-to-one correspondence with such subcritical blowing-up solutions.
Submission history
From: Martin Mayer [view email][v1] Sat, 22 Dec 2018 06:14:30 UTC (34 KB)
[v2] Sat, 25 Jan 2020 07:20:03 UTC (28 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.