Mathematics > Algebraic Topology
[Submitted on 22 Dec 2018 (v1), last revised 25 Oct 2019 (this version, v3)]
Title:Pair component categories for directed spaces
View PDFAbstract:The notion of a homotopy flow on a directed space was introduced in \cite{Raussen:07} as a coherent tool for comparing spaces of directed paths between pairs of points in that space with each other. If all parameter directed maps preserve the homotopy type of path spaces, such a flow (and these parameter maps) are called inessential.
For a directed space, one may consider various categories whose objects are pairs of reachable points and whose morphisms may be induced by these inessential d-maps. Localization with respect to subcategories with these inessential d-maps as morphisms can be combined with a path space functor into the homotopy category, the quotient pair component category has as objects pair components along which the homotopy type is invariant -- for a coherent and transparent reason.
This paper follows up \cite{FGHR:04,GH:07,Raussen:07} and removes some of the restrictions for their applicability. If one uses homology equivalence instead of homotopy equivalence as the basic relation, it yields an alternative to computable versions of "natural homology" introduced in \cite{DGG:15} and elaborated in \cite{Dubut:17}. It refines, for good and for evil, the stable components introduced and investigated in \cite{Ziemianski:18}.
Submission history
From: Raussen Martin [view email][v1] Sat, 22 Dec 2018 11:26:57 UTC (31 KB)
[v2] Thu, 6 Jun 2019 12:04:46 UTC (35 KB)
[v3] Fri, 25 Oct 2019 08:47:01 UTC (37 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.