Mathematics > Probability
[Submitted on 22 Dec 2018 (v1), last revised 19 Jan 2019 (this version, v2)]
Title:Operator norm upper bound for sub-Gaussian tailed random matrices
View PDFAbstract:This paper investigates an upper bound of the operator norm for sub-Gaussian tailed random matrices. A lot of attention has been put on uniformly bounded sub-Gaussian tailed random matrices with independent coefficients. However, little has been done for sub-Gaussian tailed random matrices whose matrix coefficients variance are not equal or for matrix for which coefficients are not independent. This is precisely the subject of this paper. After proving that random matrices with uniform sub-Gaussian tailed independent coefficients satisfy the Tracy Widom bound, that is, their matrix operator norm remains bounded by $O(\sqrt n )$ with overwhelming probability, we prove that a less stringent condition is that the matrix rows are independent and uniformly sub-Gaussian. This does not impose in particular that all matrix coefficients are independent, but only their rows, which is a weaker condition.
Submission history
From: Eric Benhamou [view email][v1] Sat, 22 Dec 2018 22:59:12 UTC (10 KB)
[v2] Sat, 19 Jan 2019 14:25:28 UTC (10 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.